Signal Energy in Quantum-Dot Cellular Automata Bit Packets
نویسندگان
چکیده
Quantum-dot cellular automata is a novel paradigm for computing at the nanoscale. Cells are the basic computing element in quantum-dot cellular automata and function as structured charge containers rather than as current switches. Computing with quantum-dot cellular automata is enabled by quantum-mechanical tunneling and Coulomb interactions. The use of molecules as cells to realize quantum-dot cellular automata may make possible nanometer-scale devices and ultra-high device densities without excessive heat dissipation. Molecular quantum-dot cellular automata can be clocked using an external electric field. A time-varying clock can be used to drive data flow through layouts of cells. Together, the clock and the device layout define a computational architecture where data flows through the circuitry in the form of bit packets. Here we analyze the energetics of QCA bit packets. We find a heuristic model based on cell-cell interactions works well. Bit packet energies in general scale with the packet length. It may, however, be possible to design a cell geometry so that the energy is packet-length independent. Fan-out and fan-in can be understood as investing energy from the clock in the signal, and then returning the energy back to the clock.
منابع مشابه
Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata
Application of quantum-dot is a promising technology for implementing digital systems at nano-scale. Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...
متن کاملGeneric parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کاملUltra-Low Cost Full Adder Cell Using the nonlinear effect in Four-Input Quantum Dot Cellular Automata Majority Gate
In this article, a new approach for the efficient design of quantum-dot cellular automata (QCA) circuits is introduced. The main advantages of the proposed idea are the reduced number of QCA cells as well as increased speed, reduced power dissipation and improved cell area. In many cases, one needs to double the effect of a particular inter median signal. State-of-the-art designs utilize a kind...
متن کاملGeneric parity generators design using LTEx methodology: A quantum-dot cellular automata based approach
Quantum-dot Cellular Automata (QCA) is a prominent paradigm that is considered to continue its dominance in thecomputation at deep sub-micron regime in nanotechnology. The QCA realizations of five-input Majority Voter based multilevel parity generator circuits have been introduced in recent years. However, no attention has been paid towards the QCA instantiation of the generic (n-bit) even and ...
متن کاملEnergy Efficient Novel Design of Static Random Access Memory Memory Cell in Quantum-dot Cellular Automata Approach
This paper introduces a peculiar approach of designing Static Random Access Memory (SRAM) memory cell in Quantum-dot Cellular Automata (QCA) technique. The proposed design consists of one 3-input MG, one 5-input MG in addition to a (2×1) Multiplexer block utilizing the loop-based approach. The simulation results reveals the excellence of the proposed design. The proposed SRAM cell achieves 16% ...
متن کامل